
Visualizing Correctness Issues in OpenMP
Programs

Feiyang Jin, Alan Tao, Lechen Yu, and Vivek Sarkar

Georgia Institute of Technology, Atlanta GA 30332, USA
{fjin35,atao31,lechen.yu,vsarkar}@gatech.edu

Abstract. Past work on OpenMP program visualization has mainly
centered on performance analysis. This paper explores how the visu-
alization of computation graphs assists programmers in debugging is-
sues related to program correctness. The motivation is twofold. First,
researchers widely use computation graphs to analyze dynamic program
behavior. Second, most past work focused on visualizing performance
bottlenecks rather than correctness issues. This paper’s contributions
are as follows. First, we introduce techniques for building computation
graphs using the OpenMP Tools Interface (OMPT). Second, we present
a computation graph visualizer for OpenMP programs built upon these
techniques. The visualizer specifically highlights data races as the cor-
rectness issue under study. Finally, the paper includes an empirical study
of the performance and effectiveness of our prototype. The evaluation
demonstrates that our graph builder introduces minimal overhead when
integrated with state-of-the-art race detectors. We also conducted a user
study involving a control group and an experimental group. The results
show that our visualization greatly aids programmers in understanding
and debugging data races. Beyond our main contribution, which focuses
on data races, we also integrate host-device data movement in the vi-
sualization. This serves as a first step toward visualizing data mapping
issues. To the best of our knowledge, our work is the first to explore
understanding of correctness issues in OpenMP programs through inter-
active visualization of computation graphs.

Keywords: OpenMP Programs · Computation Graphs · Data Races ·
Host-Device Data Movement · Dynamic Program Analysis · Visualization

1 Introduction

A computation graph is a dynamically constructed directed graph that captures
the execution of parallel programs in a partial order. In the research commu-
nity, computation graphs are extensively used to model the dynamic behavior
of parallel programs. Debugging and analysis of parallel programs leverage com-
putation graphs in various ways:

1. Data race detection: a data race happens if two nodes in the computation
graph access the same memory locations, at least one performs a write, and



2 Jin et al.

there is no directed path in the computation graph connecting the two. This
property is utilized by many dynamic race detectors [9, 14,17,18,22,23].

2. Deadlock detection: a deadlock arises when a cycle is formed in the compu-
tation graph [19]. If the program is deadlock-free, the generated computation
graph will be a directed acyclic graph (DAG).

3. Determinacy validation: researchers have proven that programs with certain
kinds of parallel constructs (e.g., spawn-sync task parallelism and async-
finish task parallelism) have the property that data race freedom also guar-
antees determinacy [6, 9]. One key feature of determinate programs is that
given the same input, different executions of the same program will always
generate the same computation graph [8, 9].

While computation graphs have gained widespread conceptual usage, there
remains a distinct lack of tools designed for OpenMP programmers to visual-
ize them, together with any correctness issues detected. Most existing debugging
tools use computation graphs internally. When detecting a correctness issue (e.g.,
data race, buffer overflow), these tools simply dump the collected trace with an
error message. Given the complexity of OpenMP programs, manually analyzing
the trace and figuring out the root cause can be challenging, even for expe-
rienced programmers (as illustrated by our user study results in Section 6.2).
On the contrary, there have been a large amount of prior work dedicated to
visualizing the results of performance analysis [1, 3, 4, 12, 15, 21], many of which
are for OpenMP programs. These tools usually apply sampling/instrumentation
techniques to obtain performance data and embed these data into a customized
graph; later a visualization tool will display the performance data in a group of
interactive view (e.g., thread view, trace view) to highlight detected performance
issues.

Despite the limited efforts in visualizing correctness issues, the need for such
a feature remains evident. First, as mentioned above, computation graphs are
widely used to identify correctness issues in parallel programs. Introducing visu-
alization offers an effective means to comprehend program behavior and identify
the root causes of bugs. Secondly, perhaps less obvious but equally essential, visu-
alization aids developers in recognizing certain tools’ limitations. For instance,
dynamic race detectors often encounter false positives (reporting non-existing
races) due to design choices or implementation errors. Integrating the debug in-
formation of detected races with visualization can give a clearer view of a tool’s
limitations (user study results in Section 6.2 proved this).

In this paper, we take the lead in exploring how visualization of data races
can help OpenMP programmers better understand the problems. We have de-
signed and implemented a computation graph visualizer for OpenMP programs.
The tool consists of two parts: an on-the-fly graph builder written in C++ and
an interactive visualization interface written in Javascript. The graph builder
uses OpenMP Tools Interface (OMPT) to build computation graphs based on
runtime events. The tool provides interfaces for existing race detectors to report
race information. We have integrated one race detector [23] into our tool, as
an example of how the interface can be used. A second major contribution is a



Visualizing Correctness Issues in OpenMP Programs 3

research user study that evaluates the efficacy of our tool. As with any software,
the ultimate goal of our tool is to help programmers. Since no similar user study
has been conducted to study how visualization helps programmers understand
data races, we performed such one. The user study demonstrates that developers
significantly benefit from using our tool to analyze data races.

In the remaining section of this paper, we first describe the high-level de-
sign of our visualization tool. Subsequently, we propose three language-centric
approaches to build the computation graph. These approaches ensure that the
graph is tightly connected to the OpenMP programming and execution model. A
previous work on OpenMP performance analysis shares the same approach [3].
After introducing the graph builder, we present our visualization interface. The
visualization is interactive and connected to the source code so users can fol-
low the program’s execution trace through graph navigation. In short, the key
contributions of this work are:

1. A set of techniques for utilizing OMPT callbacks to build computation
graphs and an implementation of the graph builder using our techniques
(Section 4). The graph builder integrates an existing race detector to get
race information.

2. A web-hosted visualization interface for the computation graph. The visu-
alizer combines the graph, source code, trace, and race information. When
interacting with developers, it uses carefully designed animation and inter-
action to highlight data races (Section 5).

3. An evaluation of the graph builder’s performance is included and shows that
the overhead compared to stand-alone race detection is bound by a 1.32x
slowdown (Section 6.1). A research user study indicates that participants
found visualization significantly helped them comprehend data races (Sec-
tion 6.2).

4. An initial step towards visualizing data mapping issues. We explored how to
model and present host-device data movements in the computation graph.
This includes a new OMPT callback to handle data movement precisely
(Section 7), an unprecedented feature among existing callbacks.

2 Background

Computation Graph: A node in the computation graph represents a sequence
of code without any parallel constructs; the only exception is that the last state-
ment of the node may generate parallelism by task creation or synchronization.
There are three kinds of edges [17]: continuation, fork and join. Continuation
edges mark the execution order for nodes within the same task. Fork edges rep-
resent new task creation. Join edges represent synchronization.

We say node u happens before node v if and only if there is a directed path
from u to v in the computation graph. We denote it as u ↝ v. If u ↝̸ v and
v ↝̸ u, we say u, v may happen in parallel and denote it as u ∥ v.
Data Races: A data race occurs if and only if nodes u and v access the same
memory location, at least one of them conducts a write, and u ∥ v.



4 Jin et al.

A dynamic race detector usually consists of two parts [6, 9, 11, 14, 17, 18, 23]:
shadow memory and reachability structure. Shadow memory records previous
reads and writes for each memory location; the reachability structure answers
happens-before queries for pairs of nodes. In practice, reachability structures are
often designed to save only the necessary parts of a computation graph.
OpenMP: In this work, we focus on the task parallelism constructs in OpenMP.
In task parallelism, work is divided into tasks, and each available worker thread
will be assigned a task to execute. An OpenMP program starts as an initial task,
and the program executes sequentially until it encounters a parallel construct,
which will initiate a parallel region consisting of parallel tasks. By default, a
barrier occurs at the end of a parallel region to synchronize all tasks. All tasks
created before the barrier must be completed before any task created after the
barrier can start execution. The pattern is shown in Fig. 2.

3 Design

Compiler
Instrumentation

OpenMP
Program

Race detector

Graph Builder

memory access

runtime 
event

race
report

Visualization

graph data,
source code
race report

RuntimeCompilation

OpenMP
Runtime

OMPT
Callbacks

Analysis

Fig. 1. Application workflow

As shown in Fig. 1, our tool consists of two fundamental components: 1)
on-the-fly computation graph construction written in C++, and 2) graph visu-
alization written in JavaScript. Upon receiving an OpenMP program to analyze,
the tool executes the program with race detection enabled. During runtime,
the computation graph is dynamically built using OMPT. OMPT provides call-
backs to capture runtime events with marginal time overhead, and we update
the graph correspondingly in each callback. The race detector we integrated is
TSAN-SPD3 [23]. It relies on computation graphs to detect data races, though
it does not explicitly keep the graph. At runtime, if TSAN-SPD3 detects a data
race, it will report the race information to our graph builder; the graph builder
will save the information in the graph. After the program is completed, the tool
outputs all the information into a JSON file. The visualization component reads
this JSON file to present the computation graph integrated with the source
code and race report. Visualization is implemented in D3, a JavaScript library
renowned for creating interactive visualization.

Regarding conceptual exploration, our tool is the first to spotlight correct-
ness issues by visualizing computation graphs. Consequently, our approach lacks



Visualizing Correctness Issues in OpenMP Programs 5

precedence for reference. The best experience we can learn from is visualization
work for OpenMP program performance analysis [1, 3, 12, 21]. On one hand, we
share similarities. We both build a graph during execution and visualize it of-
fline. As they integrate performance information into the graph, we integrate
correctness issues detected. On the other hand, our contributions are quite dif-
ferent from theirs. The graphs built have different granularity, and we carefully
designed the graph structure to enhance comprehension. Our graph builder also
has an interface for existing tools to report information. Instead of asking pro-
grammers to find issues themselves, we allow them to utilize existing tools.

Regarding implementation, we have tested several tools mentioned in Sec-
tion 8 related work and explored existing graphing software such as yEd

1
, Cy-

toscape [16] and Intel Advisor’s FGA [1]. Nevertheless, we opted to construct our
own graph builder and visualization for several reasons. First, the installation
process of other tools posed challenges. For example, many tools in Section 8
require administrative permissions to trace programs, potentially limiting acces-
sibility. In contrast, our graph builder is an OMPT tool compatible with any
OpenMP version that supports OMPT. The visualization part is browser-based,
ensuring ease of use without installation. Additionally, the dynamic nature of our
visualization, facilitated by JavaScript, enables powerful animations that play a
pivotal role in highlighting data races - a feature that could be more robustly
supported by the alternatives we explored.

4 Graph Construction Techniques

4.1 Language-Centric Approaches

A

A'

B

B'

C

C'

barrier-begin

barrier-end

Fig. 2. OpenMP barrier pattern

A B C barrier-begin

barrier-endA' B' C'

Fig. 3. Barrier visualization in our tool

These approaches aim to enhance programmers’ comprehension by connect-
ing computation graphs to OpenMP’s programming model.
Approach 1: Designing for Programmers (rather than the specifica-
tion) While adhering closely to the OpenMP specification is always essential,
we have made adjustments in several instances to optimize the graph’s presen-
tation for improved comprehension. Here, we will use barriers as an example. In
OpenMP, when a barrier occurs, all tasks must hit the barrier before any can
proceed – a synchronization pattern depicted in Fig. 2. Previous work has used
this presentation to illustrate barrier [13,23].

However, such visualization would contaminate the computation graphs with
overlapping, crowded edges. The situation worsens when the number of threads

1
www.yworks.com/products/yed



6 Jin et al.

becomes large (we usually test benchmarks with eight threads). To avoid the
problems, we opted to redesign the barrier presentation, as shown in Fig. 3.
Theoretically, this representation means “all tasks will join a single task’s syn-
chronization node before continuation.” While a slight deviation from the formal
specification, this redesign significantly enhances the graph’s clarity and simpli-
fies navigation.

Approach 2: Leveraging Implicit Coherence in the Context. By using
the implicit coherent context, we do not need to handle all OpenMP constructs
explicitly. Our existing code already handles many “quietly”. We will use the
single construct as an example. In OpenMP, a single construct specifies that
only one task will execute the associated code block. An implicit barrier occurs
at the end of a single construct unless a nowait clause is specified. When a
single construct begins and ends, the OMPT callback work event is invoked;
the callback tells programmers which task will execute the code block.

We could utilize callback work and correspondingly update the computa-
tion graph: add a continuation node for the selected task while leaving others
untouched. However, such handling is unnecessary: as only one task will execute
the code region, other OMPT events in the region will automatically extend the
graph. Similarly, the nowait clause is implicitly handled by another OMPT call-
back, which will only be invoked if a barrier occurs. If a nowait clause is present,
the callback will not be invoked because no barrier exists. Consequently, we do
not need to save additional information when a single construct occurs. Existing
OMPT callbacks will correctly record the execution.

Approach 3: Applying Sufficient and Minimized Serialization The dy-
namic nature of OpenMP programs requires the analysis tool itself to be aware of
the parallelism. Concurrent tasks can invoke the same OMPT callbacks simulta-
neously during runtime, potentially creating data races within the analysis tool.
On the other hand, excessive serialization can impede the tool’s performance.

Here, we will explain how we handle parallel regions as an example. Recall
that a parallel region creates a group of new tasks. Ideally, the solution to updat-
ing the graph is to add a start node for each new task and connect the current
node to each new node by a fork edge. In this case, the callback provided by
OMPT is implicit task; unfortunately, it will only be invoked after each new
task is created. As a result, if we add a fork edge for each new task inside this
callback, we introduce data races because many tasks can invoke the callback
simultaneously. The resulting graph could miss several fork edges.

To safely update the graph when a group of tasks is created, we use a concur-
rent vector to save all the newly generated fork edges. Each call to implicit task

will add a fork edge to the vector. The edges will be added to the graph just
before we output it. On the other hand, additional serialization is not required
at the end of a parallel region. When a parallel region starts, we already know
the number of new tasks being created (assume the number is n). Thus, we can
create a vector v of size n and assign an index i for each new task. When each
task finishes, it only needs to put its last node into v[i]. When the parallel region



Visualizing Correctness Issues in OpenMP Programs 7

ends, one task will iterate through the vector and add join edges to the graph.
Notice that this iteration is sequential, so we do not need extra synchronization.

4.2 Implementation

Our graph builder’s source code can be accessed here
2
. The graph builder is

implemented as a stand-alone OMPT tool. During execution, the computation
graph is stored in memory and exported to a JSON file if the program com-
pletes without crashing. Many OMPT callbacks provide the program counter
as a parameter. When available, we leverage this to extract trace information,
such as line numbers and file names. For existing race detectors to report races,
we provide functions they can call to pass the information. The functions are
implemented in OMPT, so existing tools need to define them as weak functions
in their code.

2

3

1

4 5 6

Fig. 4. User interface for the visualization tool. We have hosted the tool on Amazon’s
Amplify web service (https://www.drvis.ninja). Users can access the website, view
preset examples, or upload their graphs to visualize.

5 Visualization

Fig. 4 presents the UI for the visualization. It consists of 6 divisions (Div). Div
1 is the computation graph. Each node in the graph contains:

1. Stack trace information (if available). If the stack is captured, hovering the
mouse cursor over the node will highlight the line in the source code. As

2
https://github.com/lechenyu/llvm-project/tree/ompt52_dpst

https://www.drvis.ninja
https://github.com/lechenyu/llvm-project/tree/ompt52_dpst


8 Jin et al.

shown in Fig. 4, line 38 is highlighted in this manner. At the same time, Div
6 will display the trace information, including the OMPT event this node
ends with, if it has a race or not, and the text information of the stack. Users
can move the mouse along the graph to follow the program’s execution trace
while examining the highlighted source code.

2. The feature to be collapsed. If an open node is clicked, it will be collapsed
by hiding its outgoing edges. A node will be hidden if it is unreachable from
the root node, and the process will propagate to its children recursively. This
feature allows programmers to center the scope on racy nodes or regions of
interest.

Div 2 and 3 contain the source code. The footer section consists of three
parts: Div 4 contains the legend and file upload, Div 5 has buttons to select
races, and Div 6 displays node information. Clicking on a race button in Div 5
highlights the two racy lines in Div 2 and 3. The computation graph in Div 1
will also be updated to display only up to those two racy nodes; any subsequent
nodes are hidden. In Fig. 4, the racy accesses lie on the same line because two
tasks concurrently execute the line. In real life, a race can be caused by two
different lines or even two lines in different files.

6 Empirical Study

In this section, we study the implementation of our graph builder and visualiza-
tion interface to answer the following research questions:

1. Performance (Section 6.1): How much slowdown does the graph builder in-
troduce to the original program execution?

2. Efficacy (Section 6.2): To what extent does the visualization help program-
mers better understand data races compared with traditional log reports?

6.1 Performance Evaluation

The evaluation aims to examine the amount of slowdown the graph builder in-
troduced. To measure this slowdown, we record the execution time from the
program’s start to completion. The graph dumping and visualization parts are
not considered because they are not integral to assessing the graph builder’s per-
formance. We also plan to support a more advanced graph aggregation strategy
in the future and treat it as an independent research topic.

For a better performance comparison, the benchmarks and inputs we select
are the same used in the original TSAN-SPD3 (the integrated race detector
in our tool) paper [23]. A total of nine programs from BOTS [5] are included.
The experiment was conducted on a single-node AMD server machine, which
consists of a 12-core Ryzen9 3900X operating at 3.8GHZ with 128GB mem-
ory (RAM). All benchmarks were compiled by Clang/LLVM 15.0.1 running on
Ubuntu 18.04.6. The reported execution times are presented for four configu-
rations: Base, Race, Graph, and Full. For each configuration, we report each



Visualizing Correctness Issues in OpenMP Programs 9

benchmark’s mean execution time of five runs. The coefficient of variation for
each configuration, benchmark, and five runs is within 4.5%.

The “Base” configuration measures the execution time of the original pro-
grams. The “Graph” configuration enables only the graph builder but not the
race detection. The “Race” configuration enables race detection using TSAN-
SPD3 but not the graph builder. Finally, the “Full” configuration encompasses
race detection and the graph builder.

Table 1. Graph builder performance and graph metrics

Benchmark Base Graph Race Full
Full/
Race

#node #edges #fork #join

align 1.45 1.59 10.01 10.08 1.01x 9927 14891 4958 4965
fft 1.74 17.21 30.13 39.74 1.32x 77221537 134838680 28808574 57617144
fib 1.56 23.05 58.02 71.11 1.23x 74651782 134373200 29860710 59721419
health 1.67 9.40 18.89 23.16 1.23x 52547254 87578509 17515629 35031256
nqueens 3.80 49.11 77.92 98.12 1.26x 124231833 243862475 59815322 119630643
sort 2.62 3.06 21.13 26.77 1.27x 6138550 11119286 2490373 4980737
sparselu 2.39 2.62 119.28 120.17 1.01x 588669 884345 292533 295677
strassen 1.22 1.24 25.17 27.30 1.08x 294149 568676 137265 274528
uts 0.29 2.48 19.19 20.47 1.07x 12338710 20564510 4112905 8225801

The performance and graph information are shown in Table 1. The first four
columns report the average execution time in seconds for the four configurations.
The column “Full/Race” is the slowdown of full configuration over race configu-
ration. The last four columns show the number of nodes, edges, fork edges, and
join edges for the computation graph generated from each benchmark. Fig. 5
shows the time overheads.

Benchmarks

Ti
m

e 
O

ve
rh

ea
d 

(x
)

0

20

40

60

80

ali
gn fft fib

he
alt

h

nq
ue

en so
rt

sp
ars

el

str
as

se uts

Graph Race Full

Fig. 5. Time overhead over base configuration

Concerning only the graph
builder, the data in Table 1
indicates that its slowdown
correlates to the generated
graph’s size. The three bench-
marks exhibiting the high-
est overhead (fft, fib, and
nqueens) correspond precisely
to the top three largest
computation graphs gener-
ated (nodes+edges). More-
over, they also have the
largest number of join edges.
The increasing size of the graph and join edges bring more serialized operations
within our tool, as discussed in Section 4.1. Similarly, the three benchmarks
with the lowest overhead (align, strassen, and sparselu) generate the smallest
computation graphs and the fewest join edges.

A second crucial finding is that integrating our graph builder with the race
detector introduces no more than 1.32x overhead (Full over Race configuration).
The logic is coherent because, unlike a race detector, the graph builder does not
need to record the access history for each memory location or check for races



10 Jin et al.

when memory access occurs. As a result, the overhead imposed by the graph
builder is mostly subsumed by the overhead introduced by the race detector.

6.2 Efficacy Study

To evaluate the efficacy of our visualization, we conducted an anonymous user
study among graduate-level students, faculty members, and software engineers
from different institutions. Participants were randomly divided into a control
group and an experimental group. The control group received traditional log
race reports from TSAN-SPD3, while the experimental group used race reports
presented by our visualization tool. We received a total of 25 responses. After re-
moving poor-quality and irregular data (responses with extreme response times),
the experimental group had 8 valid responses, while the control group had 10.

The study consisted of three parts. Part 1: Both groups received an introduc-
tion to data races along with examples of race reports. In addition, participants
of both groups were asked to rate their familiarity, on a scale from 1 to 10, with
the following concepts: Parallel Computing or Multithreading, OpenMP, Data
Races or Race Conditions and Computation Graphs. The response results are
shown in Table 2. The self-reported proficiency ratings indicate that differences
in individual skill in parallel computing had little impact on the user efficacy
study.

Table 2. Average Self-Declared Proficiency

Group Part
Average Proficiency by Topic

Parallel Computing OpenMP Data Races Computation Graphs

Control 1 6.4 4.8 6.1 4.4
Experimental 1 6.125 5 6.75 4.75

Part 2: For 5 programs (Q1 ∼ Q5), participants were asked to identify
whether the reported races were true reports or false alarms. Part 3 (optional):
For 3 programs (B1 ∼ B3), we showed the first line involved in the race; partic-
ipants needed to identify the second line. We analyzed the responses using two
metrics. 1) The percentage of correct responses and 2) The average response
time.

Table 3. Accuracy, average time elapsed (seconds), and participation rate

Group Part
Accuracy and Average Response time Participation

Q1 Q2 Q3 Q4 Q5 Q1 ∼ Q5

Control 2 50% (119s) 38% (115s) 50% (118s) 75% (82s) 50% (64s) 100%
Experimental 2 50% (53s) 50% (145s) 63% (45s) 88% (26s) 63% (31s) 100%

B1 B2 B3 B1 B2 B3

Control 3 17% (60s) 0% (106s) 0% (81s) N/A N/A 60% 50% 50%
Experimental 3 50% (117s) 50% (65s) 25% (50s) N/A N/A 100% 100% 100%

Table 3 reveals interesting trends. For part 2, a required section, the experi-
mental group demonstrated equivalent or superior accuracy to the control group



Visualizing Correctness Issues in OpenMP Programs 11

across all five questions while spending significantly less time overall (except for
Q2). For part 3, an optional section, all participants in the experimental group
finished all questions, in contrast to the control group’s 50% completion rate.
Control group members may encounter challenges using traditional log reports,
even if the reports contain stack traces and line numbers. These challenges could
contribute to the observed lower completion rates and accuracy.

After part 3, both groups rated the difficulty of understanding data races on a
scale from 1 to 10. Results indicate that participants in the control group (avg.
8.4) found data races challenging to comprehend. Upon viewing a screenshot
of our tool, they strongly agreed (avg. 8) that visualization would facilitate
their understanding of data races. Conversely, the experimental group rated the
difficulty of understanding data races as fair (avg. 4.6) and strongly agreed (avg.
7.3) that visualization aids comprehension.

These results suggest that our visualization tool offers the advantage of en-
hanced productivity. It enables programmers to gain a deeper understanding of
data races and expedites the process of identifying root causes, thereby reducing
time spent. Moreover, the tool helps programmers recognize a race detector’s
limitations by visualizing false negatives. By utilizing the graph, developers can
more confidently identify false results reported. Any tool’s ultimate goal is to
assist programmers, and the user study indicates that our tool, although not
perfect, is clearly on the right track.

7 Extending Beyond Data Races: Visualizing Data
Mapping Issues

OpenMP programs suffer from various correctness issues. For example, previ-
ous work [24] has shown that many bugs can arise from misunderstandings of
data movement behavior. These bugs include data races, uninitialized memory,
stale data, and more. We currently support host-device data movement in our
visualization. In an ongoing project, we are integrating Arbalest [24] to report
bugs caused by incorrect use of data movement. Fig. 6 shows our current visual-
ization. OpenMP programmers can use the target offloading feature to migrate
code onto heterogeneous devices for execution. Data is moved between the host
(CPU) and the target/device (GPU) at the begin/end of an offloading. Users
can specify options to control this movement. For example, the to option copies
data from host to device at the beginning but not the other way around at the
end.

#pragma omp target map(to:a[0:N]) map(from:c[0:N]) map(alloc:b[0:N*N]) device(0)

However, no current OMPT callbacks accurately model host-device data
movements. Two possible but inferior solutions using existing callbacks exist.
The first callback handles data mapping, a high-level abstraction of data move-
ment. Unfortunately, data mapping does not necessarily lead to data movement.
This may happen when the same data mapping is declared multiple times in a
GPU kernel. Tool developers could handle data movement in this callback, but
they must track if a movement is incurred every time, leading to significant time



12 Jin et al.

Fig. 6. Data movement code and visualization. The left-hand side shows transferring
data from host to target when the offloading begins. The right-hand side shows trans-
ferring data back to host when the offloading ends. Variable address, name, and size
are included for each transfer.

overhead. The second callback handles data operations, which are low-level GPU
memory operations such as allocation. These operations are used to implement
data mapping. The challenge is that it is up to the runtime to determine how to
utilize operations to accomplish a mapping, which means this callback may not
have enough information about the movement.

We introduced a new OMPT callback device mem to model host-device data
movement precisely. This callback is associated with each data mapping and
combines all data operations conducted. Therefore, it avoids problems faced by
existing callbacks and provides debugging information for the mapped variable,
including name, size, file name, and line number. These details are unavailable
with existing callbacks for data mappings and data operations.

8 Related Work

Using visualization to explore performance bottlenecks is an active research field.
Muddukrishna et al. proposed grain graphs [12], which considers grain (a task
or a parallel for-loop) as the unit for performance measuring. Langdal et al.
implemented three OMPT callbacks to build grain graphs [10]. Reissmann and
Muddukrishna proposed a strategy to aggregate grain graphs to ease naviga-
tion [15]. Agrawal et al. visualized OpenMP task dependencies using OMPT to
analyze performance [1]. Aftermath is a performance analysis tool for detecting
performance bottlenecks in task parallel programs [4]. A subsequent work ex-
tends Aftermath by providing an instrumented version of OpenMP [3]; similar
to our work, the authors applied a language-centric approach. AfterOMPT [21]
further extends Aftermath by incorporating OMPT events to trace programs.

The work mentioned above was designed to provide insights into performance
issues. A handful of projects have also contributed to debugging visualization.
DAGViz is a tool that captures and visualizes computation graphs [7]. How-
ever, users must write programs using a generic model, which only supports
three parallel constructs. Temanejo [2] acts at the task level and gives users
the dependency graph while debugging the program in its GUI. ThreadScope
visualizes multithreaded applications [20]. The graph generated shows memory
operations, and the authors propose that users can identify graph-based prob-
lems from it. However, all previous works have merely stopped at “presenting
the graph” without displaying any correctness problems, leaving users to de-
bug on their own. In contrast, our work allows existing tools to report issues
and incorporates dynamic animation and interaction. Additionally, we adopt a



Visualizing Correctness Issues in OpenMP Programs 13

language-centric approach to relate the graph to the OpenMP context. These in-
novations are crucial in helping programmers understand the problems without
getting lost in the debugging process.

9 Conclusion

In this paper, we studied how visualization can help programmers understand
data races in OpenMP programs. Our contribution lies in formulating techniques
to correctly and efficiently construct computation graphs. A new OMPT call-
back is introduced by us to model host-device data movements accurately. The
ensuing implementation of our graph builder, tailored for OpenMP programs,
provides a robust foundation for visualizing correctness-related aspects. The in-
teractive visualization interface allows programmers to review data races and
data movements. To our knowledge, our tool is the first to explore and highlight
correctness issues in OpenMP programs through a customized visualization in-
terface. It is also a trailblazer for future successors because the graph builder
and visualization are independent of any debugging tool; developers can inte-
grate their tool with our work. A key opportunity for future work is to develop an
improved aggregation approach to facilitate easier graph navigation. Loop par-
allelism can also be supported by utilizing OMPT events to collect information
and visualizing in the graph.

References

1. Agrawal, V., Voss, M.J., et al.: Visualization of openmp* task dependencies using
intel® advisor–flow graph analyzer. In: 14th International Workshop on OpenMP.
pp. 175–188. Springer (2018)

2. Brinkmann, S., Gracia, J., Niethammer, C.: Task debugging with temanejo. In:
Tools for High Performance Computing 2012. pp. 13–21. Springer (2013)

3. Drebes, A., Bréjon, J.B., et al.: Language-centric performance analysis of openmp
programs with aftermath. In: 12th International Workshop on OpenMP. pp. 237–
250. Springer (2016)

4. Drebes, A., Pop, A., et al.: Interactive visualization of cross-layer performance
anomalies in dynamic task-parallel applications and systems. In: 2016 IEEE Inter-
national Symposium on Performance Analysis of Systems and Software (ISPASS).
pp. 274–283. IEEE (2016)

5. Duran, A., Teruel, X., et al.: Barcelona openmp tasks suite: A set of benchmarks
targeting the exploitation of task parallelism in openmp. In: 2009 international
conference on parallel processing. pp. 124–131. IEEE (2009)

6. Feng, M., Leiserson, C.E.: Efficient detection of determinacy races in cilk programs.
In: Proceedings of the ninth annual ACM symposium on Parallel algorithms and
architectures. pp. 1–11 (1997)

7. Huynh, A., Thain, D., et al.: Dagviz: A dag visualization tool for analyzing task-
parallel program traces. In: Proceedings of the 2nd Workshop on Visual Perfor-
mance Analysis. pp. 1–8 (2015)



14 Jin et al.

8. Jin, F., Jacobson, J., et al.: Minikokkos: A calculus of portable parallelism. In:
2022 IEEE/ACM Sixth International Workshop on Software Correctness for HPC
Applications (Correctness). pp. 37–44. IEEE (2022)

9. Jin, F., Yu, L., Cogumbreiro, T., et al.: Dynamic determinacy race detection for
task-parallel programs with promises. In: 37th European Conference on Object-
Oriented Programming (ECOOP 2023). Schloss-Dagstuhl-Leibniz Zentrum für In-
formatik (2023)

10. Langdal, P.V., Jahre, M., Muddukrishna, A.: Extending ompt to support grain
graphs. In: 13th International Workshop on OpenMP. pp. 141–155. Springer (2017)

11. Mellor-Crummey, J.: On-the-fly detection of data races for programs with nested
fork-join parallelism. In: Proceedings of the 1991 ACM/IEEE Conference on Su-
percomputing. pp. 24–33 (1991)

12. Muddukrishna, A., Jonsson, P.A., et al.: Grain graphs: Openmp performance anal-
ysis made easy. In: Proceedings of the 21st ACM SIGPLAN Symposium on Prin-
ciples and Practice of Parallel Programming. pp. 1–13 (2016)

13. Protze, J., Hahnfeld, J., et al.: Openmp tools interface: Synchronization informa-
tion for data race detection. In: 13th International Workshop on OpenMP. pp.
249–265. Springer (2017)

14. Raman, R., Zhao, J., et al.: Scalable and precise dynamic datarace detection for
structured parallelism. Acm Sigplan Notices 47(6), 531–542 (2012)

15. Reissmann, N., Muddukrishna, A.: Diagnosing highly-parallel openmp programs
with aggregated grain graphs. In: Euro-Par 2018: Parallel Processing: 24th Inter-
national Conference on Parallel and Distributed Computing, Turin, Italy, August
27-31, 2018, Proceedings 24. pp. 106–119. Springer (2018)

16. Shannon, P., Markiel, A., et al.: Cytoscape: a software environment for integrated
models of biomolecular interaction networks. Genome research 13(11), 2498–2504
(2003)

17. Surendran, R., Sarkar, V.: Dynamic determinacy race detection for task parallelism
with futures. In: International Conference on Runtime Verification. pp. 368–385.
Springer (2016)

18. Utterback, R., Agrawal, K., et al.: Efficient race detection with futures. In: Proceed-
ings of the 24th Symposium on Principles and Practice of Parallel Programming.
pp. 340–354 (2019)

19. Voss, C., Cogumbreiro, T., Sarkar, V.: Transitive joins: a sound and efficient online
deadlock-avoidance policy. In: Proceedings of the 24th Symposium on Principles
and Practice of Parallel Programming. pp. 378–390 (2019)

20. Wheeler, K.B., Thain, D.: Visualizing massively multithreaded applications with
threadscope. Concurrency and computation: Practice and experience 22(1), 45–67
(2010)

21. Wodiany, I., Drebes, A., et al.: Afterompt: An ompt-based tool for fine-grained
tracing of tasks and loops. In: 16th International Workshop on OpenMP. pp. 165–
180. Springer (2020)

22. Xu, Y., Singer, K., Lee, I.T.A.: Parallel determinacy race detection for futures. In:
Proceedings of the 25th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming. pp. 217–231 (2020)

23. Yu, L., Jin, F., et al.: Leveraging the dynamic program structure tree to detect data
races in openmp programs. In: 2022 IEEE/ACM Sixth International Workshop on
Software Correctness for HPC Applications (Correctness). pp. 54–62. IEEE (2022)

24. Yu, L., Protze, J., et al.: Arbalest: dynamic detection of data mapping issues
in heterogeneous openmp applications. In: 2021 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). pp. 464–474. IEEE (2021)


	Visualizing Correctness Issues in OpenMP Programs

