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Abstract—Kokkos is a C++ library and ecosystem for writing
parallel programs on heterogeneous systems. One of the primary
goals of Kokkos is portability: programs in Kokkos are expressed
through general parallel constructs which can enable the same
code to compile and execute on different parallel architectures.
However, there is no known formal model of Kokkos’s semantics,
which must be generic enough to support current and future
CPU and accelerator architectures. As a first step of formalizing
Kokkos, We introduce MiniKokkos: a small language capturing
the main features of Kokkos, and then prove that MiniKokkos
ensures portability across all possible parallel executions. We
also provide a case study of how MiniKokkos can help reason
about Kokkos programs and help find a bug in the Kokkos
implementation.

Index Terms—parallel programming, semantics, programming
languages

I. INTRODUCTION

Kokkos [1] is a C++ library and ecosystem designed around
the abstraction of data management and parallel execution
across different devices. Kokkos arose from the need to
write maintainable, high-performance parallel software for our
current world of highly heterogeneous computer architectures.

To achieve these goals, Kokkos is based on the concept
of data parallel primitives (DPP) [2], where algorithms are
expressed using a small number of parallel operations and
parallelism is assumed to be unbounded. Kokkos abstracts over
two primary concepts: data and parallel execution. A Kokkos
user writes a parallel program by describing the data (such as
the layout and location of multidimensional array elements)
and execution model (the set of parallel operations) over these
data. Then, Kokkos translates this program into one of several
back-ends (e.g., CUDA, OpenMP, or HIP). This permits a
unified semantics and allows the programmer to express a
program at a high-level, without worrying about the details
of each back-end. Achieving good performance across many
different architectures is called performance portability.

The underlying concepts of Kokkos are elegant, but the gen-
erality of Kokkos allows users to write programs that deadlock
or contain data races. The complexity of various back-end
platforms complicates the debugging process and can cause
misunderstanding when porting from different programming
paradigms. One example is a fence (also called a synchroniza-
tion point or barrier), which has subtle semantic differences
across different CPU and GPU architectures. Furthermore, the

Execution space ES ::= Host | Dev
Types τ ::= N | V | void

Expressions e ::= x | c | e1 + e2 | View(ES, e)

Statement List s ::= i ; s | ret
Instruction i ::= m | x← e

| Parfor(ES, e, s) | Fence(ES)

| DeepCopy(x, y)
| if e then s1 else s2

Memory operation m ::= rd x y⟨e⟩ | wr x y⟨e⟩

Fig. 1. Syntax of MiniKokkos

TABLE I
IMPORTANT SYMBOLS AND NOTATIONS

Symbol Explanation
℧ a value, could be c or vw
c a natural number, has type N
vw a view, has type V
x, y local variables
tmem [x] = ℧ x has value ℧ in thread-local memory
HostSM[vw 7→ vdata(c)] vw holds c natural numbers in HostSM

len(vw) The number of elements (length) of vw
∗vw⟨c⟩ = ℧ View vw at index c has value ℧
∗tcHost = n There are n active threads on the Host

complex semantics of C++ adds to the challenge of reasoning
about a Kokkos program.

To help Kokkos users and tool builders understand program
behaviors, detect potential bugs, and correctly interpret func-
tionality, we aim to formalize Kokkos. We start by abstracting
away the complexity of C++ and back-ends and instead
model a simplified core calculus we call MiniKokkos. Our
semantics formalizes the informal semantics described by the
developers of Kokkos and have been developed and refined
through collaboration with the Kokkos team. In summary, the
contributions of this paper are:
• a core calculus, MiniKokkos, which captures the main

concepts of Kokkos;
• proofs for key properties that MiniKokkos maintains,

such as deadlock freedom and portability; and
• a case study where MiniKokkos helped detect a bug in

the implementation of Kokkos.

II. SYNTAX & TYPES

In this section, we introduce the syntax (Fig. 1) and types
(Fig. 2) of MiniKokkos.

A MiniKokkos program consists of a sequence of state-
ments, where a statement is either an instruction or a ret. In-
structions include assignments, conditionals, synchronization
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R-NAT
c ⇓ c R-ADD

e1 ⇓ c1 e2 ⇓ c2

e1 + e2 ⇓ c1 + c2

R-ASSIGN
e ⇓ e′

x← e ⇓ x← e′

T-NAT
Γ ⊢ c : N T-ADD

Γ ⊢ e1 : N Γ ⊢ e2 : N
Γ ⊢ e1 + e2 : N

T-VAR
Γ, x : τ ⊢ x : τ

T-RET
Γ ⊢ ret : void

T-VIEW Γ ⊢ e : N
Γ ⊢ View(ES, e) : V

T-ASSIGN
Γ ⊢ e : τ Γ, x : τ ⊢ s : τ ′

Γ ⊢ x← e ; s : τ ′

T-SEQ Γ ⊢ i : τ Γ ⊢ s : τ ′

Γ ⊢ i ; s : τ ′

T-PARFOR Γ ⊢ e : N
Γ ⊢ Parfor(ES, e, s) : void

T-FENCE
Γ ⊢ Fence(ES) : void

T-DEEPCOPY
Γ ⊢ x : V Γ ⊢ y : V

Γ ⊢ DeepCopy(x, y) : void

T-IF
Γ ⊢ e : N Γ ⊢ s1 : τ Γ ⊢ s2 : τ

Γ ⊢ if e then s1 else s2 : τ

T-READ-VIEW
Γ ⊢ y : V Γ ⊢ e : N Γ, x : N ⊢ s : τ ′

Γ ⊢ rd x y⟨e⟩ ; s : τ ′

T-WRITE-VIEW
Γ ⊢ x : N Γ ⊢ y : V Γ ⊢ e : N

Γ ⊢ wr x y⟨e⟩ : void

Fig. 2. Reduction (R-) and typing (T-) rules for MiniKokkos.

points (fences), parallel loops, and memory operations. We use
x to denote a thread-local variable (which cannot be accessed
by memory read/write operations) and c as a constant (in our
case, the only constants are natural numbers).

Two simplifying features of MiniKokkos are that variables
are single-assigned, and the only operation permitted on values
is addition. These are not major limitations from the viewpoint
of formal semantics since a multiple-assignment local variable
can be renamed to multiple single-assignment variables, and
the semantics of additional operators is usually a simple
extension to that of a basic operator like addition.

A MiniKokkos program has two execution spaces, Host

and Dev. Each execution space has its own shared memory,
which we call HostSM and DevSM. Data are only accessible
by statements instances executed in their matching execution
spaces (to capture the semantics that accelerators have separate
memory address spaces in general). A statement instance
cannot access data in another execution space unless data
are explicitly copied via DeepCopy. A thread also has its
own local memory, which is only visible to itself. We further
discuss shared and local memory in Sec. III.

We next explain the instructions. Assignment rules of the
form x ← e will create a new local variable x and assign it
the value computed from e. The instruction x← View(ES, e)
allocates a new view in the shared memory of the correspond-
ing execution space, which is saved in the local variable x.
While the variable is immutable, the data stored in the View is

mutable. We require e to evaluate to a natural number (e ⇓ c).
The instruction Parfor(ES, e, s) creates a new parallel-for

region with c threads and body s. We require e to evaluate to
a natural number (e ⇓ c).
Fence(ES) can be called by the master thread (the thread

that starts the program and remains active until the program
finishes) to wait for all submitted work on ES to finish.
DeepCopy(x, y) can be invoked by the master to copy the
contents of View saved in y to the View saved in x.

Reading and writing of views are handled by rd x y⟨e⟩ and
wr x y⟨e⟩, which access index c of view y. And so, rd makes
a new variable, and wr requires an existing local variable. We
also require e ⇓ c.

We next describe our type system, shown in Fig. 2. There
are three types in MiniKokkos: natural numbers (N), Views
(V), and the unit type (void ). We handle variables (T-VAR)
similarly to the simply-typed λ-calculus [3]: they are created
assuming a valid string in the program text, and the most recent
binding is looked up in the typing context Γ. T-ASSIGN states
that the newly created variable x will have the type of the
expression it is assigned. T-DEEPCOPY rules that DeepCopy
only makes sense on views, and T-WRITE-VIEW ensures that
only natural numbers can be written to a view.

One important implication of our type system’s simplicity is
its lack of expressiveness: execution spaces are not types (but
simply syntactic elements), and there are no function types.
Rather, a list of statements is what gets executed inside of a
parallel loop. In practice, this is closer to the actual behavior
of Kokkos embedded in C++.

Type systems also typically have proofs of type safety
(progress and preservation); we do not include these for two
reasons: space limitation, and the execution model, not the
type system is the main focus of MiniKokkos. Extending
the type system is a future research direction because many
powerful C++ type features (such as concepts) provide more
type-safety to Kokkos programs.

For reference, we provide Table I to list the notation we use
throughout this work. We next discuss program state, which
is required to describe the semantics in Sec. IV.

III. PROGRAM STATE

We represent the state σ of a MiniKokkos program as
a combination of shared memories and computation graph,
denoted as σ = (HostSM, DevSM, G). HostSM and DevSM are
maps that save each view, plus the count of threads in the
execution space. They have the notation

HostSM = {tcHost 7→ kh,

vw1 7→ vdata(c1), · · · , vwm 7→ vdata(cm)}
DevSM = {tcDev 7→ kd,

vw1 7→ vdata(c1), · · · , vwn 7→ vdata(cn)}.

The computation graph G corresponds to a execution history
(trace) of a program. The rules for constructing G are defined
in Fig. 3. A thread node t is a quadruple [f,ES ,LM , s]
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Computation graph G ::= t Thread node

| G + t1
Seq−−→ t2

| G + t1
Fork−−−→ t2

| G + t1
Seq−−→ t

′ Join←−−− t2

Thread node t ::= [f, ES, LM, s]

Fig. 3. Computation graph for MiniKokkos

that includes a thread id f , a flag ES that indicates the
execution space of the thread, a map LM that represents the
local memory, and a statement s that the node will execute.
Map LM has the notation {x1 7→ ℧1, . . . , xn 7→ ℧n}. The
notation tmem [x] retrieves the value saved in x in tmem . The
root node R for a program P is a thread node of the form
[0, Host, {}, P ]. We assume the master thread has id 0 and
executes on the Host. The master thread is allowed to perform
several operations on both HostSM and DevSM, see Fig. 5. For
convenience, we may also refer to each element of the tuple
as [f = ttid ,ES = tes ,LM = tmem , s = tcode ].

The notation G + t1
Seq−−→ t2 indicates that G is extended

with an edge labeled Seq and the edge connects two nodes
t1, t2. Edges denoted

Seq−−→ capture sequential regions (e.g.,
statements within a single thread), while Fork edges capture
new thread creation in Parfor; Join edges capture thread
synchronization in Fence. If t1

Seq−−→ t2, we say t2 is
t1’s continuation node. We present an example MiniKokkos
program and its state transition in Fig. 4.

IV. SEMANTICS

We describe the small-step semantics for MiniKokkos in
Figs. 5, 6. Here we briefly explain each rule. At a program’s
start (K-START), the two shared memory spaces (host and
device) have thread count information and the computation
graph contains the root node. Note that without an explicit
copy, views in HostSM are not visible to DevSM, and vice
versa. For simplicity, We assume unbounded memory in both
cases.

Creating a new View allocates a location in the shared
memory of the given execution space, initializes every entry to
0, and extends the local memory with a variable that references
the new View. Reading and writing to a View accesses the
shared memory directly, and reading from a View extends the
local memory with the value read.

Parfor commands start a new parallel-for region in the
provided execution space ES. The invoking thread will have
an execution node that runs asynchronously with the Parfor
body. Newly created threads execute the Parfor body and
inherit (by copying) the local memory of the invoking thread;
a unique loop index is added to each thread’s local memory.
Fence(ES) can only be invoked by the master thread, and

the master thread will wait for all work submitted to ES
to be completed before it can continue. Whether to wait is
determined by checking the thread count information in the
shared memory. For node v, the notation out(v) denotes the
number of outgoing edges from v.

DeepCopy(x, y) can only be invoked by the master thread.
The master thread will perform the copy operation if the two
views have the same length, and all previous submitted work
are finished. Because the master thread itself is executing the
copy operation, no new work can be submitted to either Host
or Dev before the copy finishes. We assume that whenever
new threads or variables are created, they are given unique
and consistent names across different executions.

We finish this section by discussing the essential design
choices of Kokkos and their implementation in MiniKokkos.

1) View: Views in Kokkos behave like pointers with meta-
data describing their dimension and location. This design
is reflected in MiniKokkos as well. Each read or write
is performed to the shared memory directly because no
thread-local copy of a View exists. Assignment of one
View to another will perform shallow copy. At creation,
Kokkos initializes each slot in the View by the default
constructor of the type it holds; MiniKokkos behave
similarly by initializing all entries to be 0 when created.

2) Fence: Kokkos requires that Kokkos::fence is not called
inside an existing parallel region (i.e., inside the oper-
ator() of a functor or lambda) [4]. In MiniKokkos, we
only allow the master thread to invoke a fence. This
restriction prevents deadlock in MiniKokkos, as proved
in Theorem VI.1.

3) DeepCopy: Kokkos provides two versions of DeepCopy.
If no execution space argument is passed in, the call
is blocking: it will wait for all work on all execution
space to finish, perform the copy, and return after the
copy finishes. The call is potentially asynchronous if an
execution space argument is passed in. The DeepCopy in
MiniKokkos corresponds to the first version; we discuss
the second version in our case study (Sec. VII).

V. PRELIMINARIES

We now state some preliminary definitions and prove aux-
iliary lemmas, which we use in the following section.

For a program P , let notation P ⇓ σ be the execution of
program P , defined as [0, Host,∅, P ] →⋆

σ and P can take no
more steps (that is, σ is the state at the end of the execution).

Definition V.1 (Happens-before). Node v precedes or
happens-before node u if and only if there exists at least one
directed path from v to u in the computation graph G. We
denote it as v ↝ u. If it is not the case, we denote it as v ↝̸ u.
Node v is in parallel with u, denoted v ∥ u, if u ↝̸ v and
v ↝̸ u.

Definition V.2 (Read and Write). A thread node t on Host
reads from index d of view vw if 1). tcode = rd x y⟨e⟩ ; s,
where tmem [y] = vw, vw ∈ HostSM and e ⇓ d; or 2). tcode =

DeepCopy(x, y), where tmem [y] = vw and vw ∈ HostSM or
vw ∈ DevSM.

A thread node t on Host writes to index d of view vw if 1).
tcode = wr x y⟨e⟩, where tmem [y] = vw, vw ∈ HostSM and
e ⇓ d; or 2). tcode = DeepCopy(x, y), where tmem [x] = vw
and vw ∈ HostSM or vw ∈ DevSM. We omit similar definitions
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0, Host, {},  
x ← 3; s

0, Host, {x ↦ 3},  
y ← View(Dev, x); s

0, Host, {x ↦ 3, y ↦ vw},  
Parfor(Dev, x, wr i y<i>; ret);

s

0, Host, {x ↦ 3, y ↦ vw},  
Fence(Dev); s

2, Dev,{... i ↦ 0},  
wr i y<i>; s

2, Dev,
{...}, ret

3, Dev,
{...}, ret

4, Dev,
{...}, ret

0, Host, {x ↦ 3, y ↦ vw},  
Fence(Dev); s

tcHost ↦ 1  
x ↦ 3

tcHost ↦ 1tcDev ↦ 0

tcDev ↦ 0

tcHost ↦ 1  
x ↦ 3

tcDev ↦ 0
vw ↦ [0,0,0]

tcDev ↦ 3
vw ↦ [0,0,0]

tcHost ↦ 1  
x ↦ 3

tcHost ↦ 1  
x ↦ 3

tcDev ↦ 3
vw ↦ [0,1,2]

3, Dev,{... i ↦ 1},  
wr i y<i>; s

4, Dev,{... i ↦ 2},  
wr i y<i>; s

tcDev ↦ 0
vw ↦ [0,1,2]

tcHost ↦ 1  
x ↦ 3

HostSMDevSM G Legend

Seq edge

Fork edge

Thread node

Join edge

Code

x ← 3 
y ← View(Dev, x) 
Parfor(Dev, x,  
      "wr i y<i>; ret") 
Fence(Dev) 
... 

Fig. 4. Example MiniKokkos program and state transition.

K-START
(HostSM, DevSM, G) = ({tcHost 7→ 1}, {tcDev 7→ 0}, [0, Host, {}, P ])

K-VIEW-HOST
tcode = x← View(Host, e) ; s e ⇓ n vw /∈ HostSM tes = Host

(HostSM, DevSM, G)→ (HostSM ∪ {vw 7→ vdata(n), ∀0 ≤ i < n, ∗vw⟨i⟩ 7→ 0}, DevSM, G + t
Seq−−→ [ttid , tes , tmem ∪ {x 7→ vw}, s]

K-VIEW-CROSS
tcode = x← View(Dev, e) ; s e ⇓ n vw /∈ DevSM ttid = 0

(HostSM, DevSM, G)→ (HostSM, DevSM ∪ {vw 7→ vdata(n), ∀0 ≤ i < n, ∗vw⟨i⟩ 7→ 0}, G + t
Seq−−→ [ttid , tes , tmem ∪ {x 7→ vw}, s]

K-VIEW-READ

tcode = rd x y⟨e⟩ ; s tmem [y] = vw e ⇓ n
vw ∈ HostSM len(vw) > n ∗vw⟨n⟩ = ℧ tes = Host

(HostSM, DevSM, G)→ (HostSM, DevSM, G + t
Seq−−→ [ttid , tes , tmem ∪ {x 7→ ℧}, s])

K-VIEW-WRITE
tcode = wr x y⟨e⟩ ; s tmem [x] = ℧ tmem [y] = vw e ⇓ n vw ∈ HostSM len(vw) > n tes = Host

(HostSM, DevSM, G)→ (HostSM[∗vw⟨n⟩ 7→ ℧], DevSM, G + t
Seq−−→ [ttid , tes , tmem , s])

K-PARFOR-HOST
tcode = Parfor(Host, e, s′) ; s e ⇓ n f0 . . . fn−1 /∈ G i /∈ tmem tes = Host ∗tcHost = n0

(HostSM, DevSM, G)→ (HostSM[tcHost 7→ n0 + n], DevSM, G + t
Seq−−→ [ttid , tes , tmem , s]

+t
Fork−−−→ [f0, Host, tmem ∪ {i 7→ 0}, s′] + . . . + t

Fork−−−→ [fn−1, Host, tmem ∪ {i 7→ n− 1}, s′])

K-PARFOR-CROSS
tcode = Parfor(Dev, e, s′) ; s e ⇓ n f0 . . . fn−1 /∈ G i /∈ tmem ttid = 0 ∗tcDev = n0

(HostSM, DevSM, G)→ (HostSM, DevSM[tcDev 7→ n0 + n], G + t
Seq−−→ [0, Host, tmem , s]

+t
Fork−−−→ [f0, Dev, tmem ∪ {i 7→ 0}, s′] + . . . + t

Fork−−−→ [fn−1, Dev, tmem ∪ {i 7→ n− 1}, s′])

K-RETURN
tcode = ret tes = Host ∗tcHost = n

(HostSM, DevSM, G)→ (HostSM[tcHost 7→ n− 1], DevSM, G)

K-FENCE1
tcode = Fence(Host) ; s ttid = 0 ∗tcHost = 1 S = {u | ucode = ret, ues = Host, out(u) = 0}

(HostSM, DevSM, G)→ (HostSM, DevSM, G + t
Seq−−→ [ttid , tes , tmem , s]

Join←−−− u ∈ S)

K-FENCE2
tcode = Fence(Dev) ; s ttid = 0 ∗tcDev = 0 S = {u | ucode = ret, ues = Dev, out(u) = 0}

(HostSM, DevSM, G)→ (HostSM, DevSM, G + t
Seq−−→ [ttid , tes , tmem , s]

Join←−−− u ∈ S)

K-DEEPCOPY

tcode = DeepCopy(x, y) ; s tmem [x] = vw1 tmem [y] = vw2 vw1 ∈ HostSM vw2 ∈ DevSM

len(vw1) = len(vw2) = n ∗tcHost = 1 ∗tcDev = 0 ttid = 0

(HostSM, DevSM, G)→ (HostSM[∀0 ≤ i < n, ∗vw1⟨i⟩ 7→ ∗vw2⟨i⟩], DevSM, G + t
Seq−−→ [0, Host, tmem , s])

Fig. 5. Small-step semantics for threads on Host. We omit the semantics for DeepCopy for other combinations of Host and Dev since they behave
identically. Specifically, there are three additional rules for vw1, vw2 set to: 1). vw1 ∈ DevSM, vw2 ∈ HostSM 2). vw1 ∈ HostSM, vw2 ∈ HostSM, and 3).
vw1 ∈ DevSM, vw2 ∈ DevSM.
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K-VIEW-DEV
tcode = x← View(Dev, e) ; s e ⇓ n vw /∈ DevSM tes = Dev

(HostSM, DevSM, G)→ (HostSM, DevSM ∪ {vw 7→ vdata(n), ∀0 ≤ i < n, ∗vw⟨i⟩ 7→ 0}, G + t
Seq−−→ [ttid , tes , tmem ∪ {x 7→ vw}, s]

K-VIEW-READ-DEV

tcode = rd x y⟨e⟩ ; s tmem [y] = vw e ⇓ n
vw ∈ DevSM len(vw) > n ∗vw⟨n⟩ = ℧ tes = Dev

(HostSM, DevSM, G)→ (HostSM, DevSM, G + t
Seq−−→ [ttid , tes , tmem ∪ {x 7→ ℧}, s])

K-VIEW-WRITE-DEV
tcode = wr x y⟨e⟩ ; s tmem [x] = ℧ tmem [y] = vw e ⇓ n vw ∈ DevSM len(vw) > n tes = Dev

(HostSM, DevSM, G)→ (HostSM, DevSM[∗vw⟨n⟩ 7→ ℧], G + t
Seq−−→ [ttid , tes , tmem , s])

K-PARFOR-DEV
tcode = Parfor(Dev, e, s′) ; s e ⇓ n f0 . . . fn−1 not in G i /∈ tmem tes = Dev ∗tcDev = n0

(HostSM, DevSM, G)→ (HostSM, DevSM[tcDev 7→ n0 + n], G + t
Seq−−→ [ttid , tes , tmem , s]

+t
Fork−−−→ [f0, Dev, tmem ∪ {i 7→ 0}, s′]

+t
Fork−−−→ [f1, Dev, tmem ∪ {i 7→ 1}, s′] + . . . + t

Fork−−−→ [fn−1, Dev, tmem ∪ {i 7→ n− 1}, s′])

K-RETURN-DEV
tcode = ret tes = Dev ∗tcDev = n

(HostSM, DevSM, G)→ (HostSM, DevSM[tcDev 7→ n− 1], G)

K-IF-T
tcode = if e then s1 else s2; s e ⇓ n n ≥ 1

(HostSM, DevSM, G)→ (HostSM, DevSM, G + t
Seq−−→ [ttid , tes , tmem , s1 ; s])

K-IF-F
tcode = if e then s1 else s2; s e ⇓ 0

(HostSM, DevSM, G)→ (HostSM, DevSM, G + t
Seq−−→ [ttid , tes , tmem , s2 ; s])

Fig. 6. Semantics for statements, and threads on Dev.

for nodes on Dev. Node t accesses a view vw, index d if node t
reads from vw⟨d⟩ or t writes to vw⟨d⟩.
Definition V.3 (Data race and Data-race free). A data race
on view vw index d occurs iff thread nodes t1 and t2 access
vw⟨d⟩, at least one of them conducts a write, and t1 ∥ t2.

We say that a computation graph G is Data-Race
Free (DRF) if and only if for any view vw index d, no data
races occur on vw⟨d⟩. We say that a program P is Data-Race
Free if for any σ such that P →

⋆
σ, σ.G is data-race free.

Definition V.4 (Deadlock and Deadlock free). Let P ⇓ σ. A
thread node t ∈ σ.G is a pending node if tcode = Fence(ES);s
and t has no outgoing continuation edge. We say that P ⇓ σ
is deadlocked if there exists at least one pending node in σ.G.
We say that program P is Deadlock Free (DF) if all σ such
that P ⇓ σ, are not deadlocked.

Definition V.5 (Spawn tree). A spawn tree for a computation
graph G, denoted as st(G), is the subgraph containing all
thread nodes and Fork/Seq edges.

Definition V.6 (Path). A path in graph G, notation W ∈ G,
is an alternating sequence W = x1e1x2e2 . . . xk−1ek−1xk of
nodes xi and edges ej from G such that 1). the tail of ei is xi

and the head of ei is xi+1 for every i; and 2). all nodes and
edges are distinct. The length of a path is the number of its
arcs. We use ∶∶ as the “cons” operator for lists; that is, W ∶∶ x
appends x to the end of W . We say W is a path from x1 to
xk or a [x1, xk]-path.

VI. PROPERTIES

In this section, we prove the portability of MiniKokkos
programs. The property essentially means that without data
races, different traces of a MiniKokkos program will always
generate the same program state (same computation graph,

same shared memories) when executed, regardless of the
specific back-end used. In Kokkos itself, back-end refers to
the target architectures for Host and Device (such as CUDA
or OpenMP), but in MiniKokkos we can think of it as simply
different thread counts and potential thread schedules; in
MiniKokkos we treat back-ends as opaque and just denoted
as Host or Dev.

Recall that in our computation graph, a thread node t is
a quadruple [f,ES, LM, s]. This quadruple defines a node’s
identity. When we write “if t exists in G then t exists in H”,
we specify which node in H we are referring to: namely, the
node that has the same [f,ES, LM, s] as node t in G. It also
assists us in interpreting path equality because path equality
builds on node equality.

Lemma VI.1 (DRF property). Let P be DRF and P ⇓ σ. For
σ.G, all writes to a view vw, index d are well-ordered. This
means W1 ↝ W2 ↝ . . . ↝ Wn−1 ↝ Wn if thread node Wi

writes to vw⟨d⟩. Any read to vw⟨d⟩ is well-ordered between
two consecutive writes. That is, we have (R1, R2, . . . , Rk) ↝
W0 ↝ (R01, R02, . . . , R0i) ↝ W1 ↝ (R11, R12, . . . , R1j) ↝
(. . .) ↝ Wn ↝ (Rn1, Rn2, . . . , Rnk).

Proof: Implied by the definition of DRF in Definition V.3.

Lemma VI.2 (Fence correctness). The Fence(ES) rule cor-
rectly synchronizes all previous submitted work on ES.

Proof: Each Fence(Dev) statement will invoke the rules
K-FENCE2 when the thread count is 0 on Dev; each
Fence(Host) will invoke the rule K-FENCE1 when the thread
count is 1 on Host. Thread count is decreased when an
active thread finishes all its statement. This implies that when
Fence is executed, any thread (except the master thread if
ES ↦ Host) on the target ES is finished.
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The continuation node t
′ will join all nodes v on the target

ES where vcode = ret and v has no outing edges. The ret

statement guarantees that v is the last node of a thread. The
fact v has no outgoing edges indicates it has not been joined
before. For those nodes u on ES such that ucode = ret and
u has outgoing edge, they were joined by one previous thread
node t

∗ such that t
∗
code = Fence(ES), t∗tid = 0. We have

t
∗
↝ t

′; as a result, u ↝ t
′, which correctly maintains the

happens-before relationship.

Theorem VI.1 (Deadlock Freedom/Progress). A well-typed
MiniKokkos program is deadlock free.

Proof: It suffices to prove the rules for synchro-
nization(K-FENCE1,K-FENCE2,K-DEEPCOPY) will progress.
The key is that Fence or DeepCopy statement cannot be called
inside a parallel region. This means that they cannot be passed
into a Parfor statement. Only the master thread can wait for
other threads; the statements executed on other threads are
non-blocking. As a result, circular waits cannot be generated
by the syntax of MiniKokkos.

Theorem VI.2 (Spawn tree portability). Let a MiniKokkos
program P be well-typed and DRF. If P ⇓ σ1 and P ⇓ σ2,
then st(G1) = st(G2) where G1 is σ1.G and G2 is σ2.G.

Proof: To conclude st(G1) = st(G2), it is enough to show
that for all W ∈ st(G1) where W is a [root , v]-path, we have
W ∈ st(G2). We prove this claim by inducting on the length
of W .
Base case: Length of W is 0, thus v = root and W =

[root , root]-path. The proof is trivial, since root is in st(G2)
and therefore W ∈ st(G2).
Inductive hypothesis: if W ∈ st(G1), W = [root , v]-path and
the length of W is less than or equal n, then W exists in G2.
Inductive step: We have W ∈ st(G1), W = [root , u]-path,
the length of W is n + 1 and W = W

′ ∶∶ (v, u). By our
inductive hypothesis we know W

′
∈ st(G2) and we want to

prove W ∈ st(G2).
To show W ∈ st(G2), it is enough to show node u ∈ st(G2)

and edge (v, u) ∈ st(G2). Because v is in both st(G1) and
st(G2), they execute the same instruction. To proceed we now
do a case analysis on the semantic rule used by v ∈ st(G2).

1) K-FENCE1,K-FENCE2: node u and edge (v, u) must
exist in st(G2). When the rule is evoked in st(G2), v
will create a continuation node and connect it with a cont
edge. The continuation node will have the same thread
id, execution space and local memory as v; furthermore,
the statement is what follows the Fence statement in v.
We can conclude that the continuation node is the same
as node u in st(G1). We thus show that node u exist in
st(G2), so does edge (v, u).

2) K-DEEPCOPY: node u and edge (v, u) must exist in
st(G2) because this operation is non-blocking. When the
rule is evoked in G2, v will create a continuation node
and connect it with a cont edge based on the rule. We
can conclude that the continuation node is the same as

node u in st(G1). We thus show that node u exist in
st(G2), so does edge (v, u).

3) K-PARFOR-*: node u and edge (v, u) must exist in
st(G2) because this operation is non-blocking and our
naming system is consistent. There are two potential
conditions based on the type of edge connecting v and
u: v

Seq
−−−→ u or v

Fork
−−−−→ u. If the edge is a Seq edge,

u is v’s continuation node. In st(G2), we create u
as v’s continuation node when v performs the Parfor
instruction. It will inherit the local memory of v because
Parfor does not change the local memory of the calling
thread.
If the edge is a Fork edge, u is the first node in one of
the newly created threads. In st(G2), when v performs
the Parfor operation, we will create n new thread nodes.
These n thread nodes will have the same thread ids as
those thread nodes in st(G1) because our naming system
is consistent. We then extend each thread node’s local
memory with a loop index, and connect v to each node
with a Fork edge. Assume in st(G1), u has a loop index
equals j. In st(G2), the newly created node with loop
index j in its local memory must be u.

4) K-VIEW-READ-*: node u and edge (v, u) must exist in
st(G2) because this operation is non-blocking and our
naming system is consistent. In G2, when v performs
wr x y⟨e⟩ where vmem[y] ↦ vw, we will create u as
v
′
s continuation node. u will extend the local memory

with the value read from vw⟨d⟩ where e ⇓ d. The value
read from r will be the same as in st(G1) because of
our DRF assumption.

5) K-VIEW-WRITE-*: node u and edge (v, u) must exist
in st(G2) because this operation is non-blocking. The
write operation does not change the local memory. When
v ∈ st(G2) performs the write, we will create u as its
continuation node.

6) All other rules: node u and edge (v, u) must exist in
st(G2) because these operations are non-blocking and
our naming system is unique and consistent.

Theorem VI.3 (Synchronization portability). Let a
MiniKokkos program P be well-typed and DRF. If
P ⇓ σ1,P ⇓ σ2, edge (v, u) ∈ σ1.G and (v, u) is a
join edge, then (v, u) ∈ σ2.G.

Proof: By Theorem VI.2, we know st(σ1.G) = st(σ2.G),
so that node v, u exist in σ2.G. We need to show that v is
joined by u in σ2.G. Recall that only master thread can call
the Fence(ES) statement. In σ1.G, nodes on master thread
that joins other threads are well-ordered in the form t1 ↝

t2 ↝ ⋯ ↝ tj−1 ↝ tj ↝ u ↝ ⋯.
In σ1.G, we have the relation tj ↝ v ↝ u. This relationship

indicates the statement that creates v is between tj and u. In
σ2.G, v cannot be joined by a node tk where k ≤ j because
it cannot be created before tj .

By Theorem VI.1, the join edge (v, u) will be created after

42

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on August 27,2024 at 16:03:34 UTC from IEEE Xplore.  Restrictions apply. 



node u is created because v has not been joined before. As a
result, v cannot be joined by any master thread node happens
after u.

Theorem VI.4 (Memory portability). Let a MiniKokkos pro-
gram P be well-typed and DRF. If P ⇓ σ1 and P ⇓ σ2, then
σ1.HostSM = σ2.HostSM and σ1.DevSM = σ2.DevSM.

Proof: By Theorems VI.2 and VI.3 we know σ1.G =

σ2.G. By Lemma VI.1, access to each shared memory location
is well-ordered. Combined them together we can conclude that
for each view vw, index d, all the access to vw⟨d⟩ in σ1.G
must also happen in σ2.G in the same order. When the program
terminates, the shared memories will be the same for σ1 and
σ2.

Theorem VI.5 (Portability). Let a MiniKokkos program P be
well-typed and DRF. If P ⇓ σ1 and P ⇓ σ2, then σ1 = σ2.

Proof: By Theorems VI.2 to VI.4.
This concludes the proofs about MiniKokkos, we now

describe how designing and proving these properties of
MiniKokkos can help reason about Kokkos itself.

VII. CASE STUDY

MiniKokkos serves as a basis for formalizing Kokkos pro-
gram behavior, particularly the concurrency patterns. We de-
sign MiniKokkos by consulting its wiki page, communicating
with developers and carefully testing numerous programs. The
result is a core language that users and developers can use for
reference.

This section presents one bug in Kokkos’s source code [4]
that we identified in the process of developing MiniKokkos,
which further reinforces the benefits of formalizing real-
world parallel libraries like Kokkos. One of the DeepCopy
templates in Kokkos accepts an execution space argument
exec_space; the intended semantics are that “the call returns
before the copy operation is executed. In that case the copy
operation will occur only after any already submitted work
to exec_space is finished, and the copy operation will be
finished before any work submitted to exec_space after the
DeepCopy call returns is executed.” [5] The latest released
code implementation is shown in Listing 1.

exec_space . f e n c e (...);
Impl :: view_copy ( cpy_exec_space (),dst ,src );
cpy_exec_space (). f e n c e (...);

Listing 1. Kokkos DeepCopy implementation (accessible on Github)

The corresponding MiniKokkos syntax that achieves the
same purpose is shown in Fig. 7.

tcode = DeepCopy(Dev, x, y) ; s ttid = 0

∗ → (HostSM, DevSM,G + t
Seq
−−−→ [0, Host, tmem , s]

+t
Fork
−−−−→ [f, Dev, tmem , Fence(Dev);Copy(x, y); Fence(Dev); ret])

Fig. 7. Rule for DeepCopy(Dev, x, y) that follows the implementation. The
function Copy(x,y) copies the values in view y into view x if they exist in
shared memory and have the same length.

In this rule, the DeepCopy(Dev, x, y) can only be called by
the master thread. The master thread will create a new thread
on the device to do the copy, while itself will continue the
execution on the host. The new thread will first wait for all
work on the device to finish, then perform the copy and finally
wait for the copy to finish before returning.

Some MiniKokkos rules would need changes to add this
DeepCopy rule, such as adding the Copy function, allowing
the copy thread to call the fence and access views in different
shared memories. While we tried to integrate this rule into
MiniKokkos, we realized that the functionality would not
obey the wiki description. Although the implementation calls
Fence before and after the copy operation, such a pattern does
not prevent new work from being submitted to exec_space
between line 1 and line 3. If any new work is submitted, it
could run asynchronously with the copy statement on line 2;
a race could occur if the new work also accesses the dst or
src View. A possible scenario written in MiniKokkos is given
in Fig. 8.

0, Host, {},  
x ← View(Host, 3); s

0, Host, {x ↦ vw},  
y ← View(Dev, 3); s

0, Host, {x ↦ vw, y ↦ vw2},  
DeepCopy(Dev, x, y); s

0, Host, {x ↦ vw, y ↦ vw2},  
Parfor(Dev, 3, s'); s

0, Host, {x ↦ vw, y ↦ vw2},  
Parfor(Dev, 3, s'); s

0, Host, {x ↦ vw, y ↦ vw2},  
ret

1, Dev, {x ↦ vw, y ↦ vw2},  
Fence(Dev); s

1, Dev, {x ↦ vw, y ↦ vw2},  
Copy(x,y); s

1, Dev, {x ↦ vw, y ↦ vw2},  
Fence(Dev); s

1, Dev, {x ↦ vw, y ↦ vw2},  
ret

2, Dev,{...},  
wr i y<i>; s

3, Dev,{...},  
wr i y<i>; s

4, Dev,{...},  
wr i y<i>; s

2, Dev,
{...}, ret

3, Dev,
{...}, ret

4, Dev,
{...}, ret

x ← View(Host, 3) 
y ← View(Dev, 3) 
DeepCopy(Dev, x, y) 
Parfor(Dev, 3, wr i y<i>; ret) 
ret 

Legend
Seq edge

Fork edge

Thread node

Join edge

CodeG

Fig. 8. Example of potential data race in current DeepCopy implementation.

The computation graph records that new work was sub-
mitted to the device between the two fences in the copy
region. Because there is no path connecting the node executing
Copy(x, y) in thread 1 and nodes executing wr i y⟨i⟩ in threads
2–4, there exist races on each index of the view saved in y.

We reported this issue to Kokkos developers on Slack and
opened a new GitHub issue [6]. One developer confirmed that
the implementation needs modification to meet the desired
behavior and that the fix would not be trivial.

VIII. RELATED WORK

Programming language formalization has been widely used
to analyze programs’ behavior. Lee and Palsberg present a
core calculus of the parallelism (async and finish) of X10
in their paper on Featherweight X10 [7]. They give a proof
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of deadlock-freedom, build a type system and perform static
analysis of programs. We also took inspiration from the Legion
programming language [8] and its computation graph. The
key difference between MiniKokkos and past works is the
modelling of execution spaces in MiniKokkos.

Atzeni and Gopalakrishnan introduce operational semantics
for OpenMP programs [9], and it serves as a basis for a
data race checker [10]. Designing a race detector based on
MiniKokkos is also an exciting direction of future research.
The reason is that MiniKokkos already records computation
graph, and computation graph is often utilized by graph-based
race detectors. A more recent work formalized cost semantics
for CUDA [11]. Building a cost semantics is much more
difficult for Kokkos because of the various supported backends
and data movement between them.

Dynamic profiling and debugging of Kokkos has been
integrated into Kokkos as an interface [12], however we are
in the process of Merging MiniKokkos into the static analysis
of Kokkos.

IX. CONCLUSION AND FUTURE WORK

We presented MiniKokkos, a simple formal language used
to model Kokkos. We described its syntax and semantics,
then proved that desirable properties held for MiniKokkos,
such as deadlock freedom and portability. A natural question
then arose: how does MiniKokkos help with Kokkos itself?
We provided one concrete piece of evidence suggesting its
utility in Sec. VII, where we showed how the development
of MiniKokkos resulted in the discovery of a bug in Kokkos
itself. By designing MiniKokkos, our goal is to show a
simple model of Kokkos to facilitate porting Kokkos to new
back-ends and porting existing code bases to Kokkos. We
plan to continue developing and formalizing the extensive
work being undertaken by the Kokkos team to help improve
their ecosystem. We are currently using MiniKokkos to guide
development of an extension to the KLEE symbolic execution
engine. This extension will model the semantics of Kokkos
inside KLEE in order to detect bugs (such as data races) in
Kokkos programs using static analysis.

A core calculus representing Kokkos opens up many av-
enues for research. The most straightforward direction is to
add more features that Kokkos supports. Examples include
multidimensional views and nested parallelism, both of which
represent additional sources of bugs in Kokkos programs. As
mentioned in Sec. II, we also wish to extend MiniKokkos’s
type system to model Kokkos and the features of C++ it uses,
such as concepts, which are semantic constraints on types,
similar to typeclasses in functional languages.

Programming in a smaller, simpler design language to rea-
son about behavior, then re-implementing in a general-purpose
programming language has shown success in distributed sys-
tems using languages such as TLA+ [13]. On a related note,
one direction of MiniKokkos could be the development of an
interpreter for MiniKokkos to enable rapid prototyping and
simpler reasoning about parallel programs.
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